Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs) were isolated from term placentas and characterized for expression of phenotypic and pluripotency markers, and for differentiation potential towards mesoderm (osteogenic and adipogenic) lineages. Moreover, hAMSCs were induced to differentiate into hepatocyte-like cells, as demonstrated by mixed function oxidase activity and expression of albumin, alpha1-antitrypsin, and CK19. We also investigated the CFTR expression in hAMSCs upon isolation and in coculture with CF airway epithelial cells. Freshly isolated hAMSCs displayed low levels of CFTR mRNA, which even decreased with culture passages. Following staining with the vital dye CM-DiI, hAMSCs were mixed with CFBE41o- respiratory epithelial cells and seeded onto permeable filters. Flow cytometry demonstrated that 33–50% of hAMSCs acquired a detectable CFTR expression on the apical membrane, a result confirmed by confocal microscopy. Our data show that amniotic MSCs have the potential to differentiate into epithelial cells of organs relevant in CF pathogenesis and may contribute to partial correction of the CF phenotype.
Highlights
Human placenta may represent a fruitful reserve of stem cells for regenerative medicine
Inno-lipa screening revealed the absence of most frequent mutation of CFTR (86% of detection rate) in human amniotic mesenchymal stem cells (hAMSCs) used in this study
HAMSCs were characterized by a fibroblastic morphology very similar to that described for mesenchymal cells isolated from bone marrow (Figures 1(a) and 1(b)) and could be kept in culture until passages 5–10
Summary
Human placenta may represent a fruitful reserve of stem cells for regenerative medicine. Because the amniotic membrane is discarded after delivery, it is easy to obtain without harming mothers or babies and would thereby overcome the ethical issues associated with the use of embryonic stem cells. Based on these considerations, human amniotic membrane/amnion-derived cells are considered to be a useful biological material and a novel cell source for cell transplantation. The availability of hAECs and hAMSCs and Journal of Biomedicine and Biotechnology the lack of ethical concerns for this source of stem cells are considered advantageous for their widespread use and acceptance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.