Abstract
Li-rich cathode materials of the formula xLi2MnO3·yLiNiaCobMncO2 (x + y = 1, a + b + c = 1) boast very high discharge capacity, ca. 250 mAh/g. Yet, they suffer capacity decrease and average voltage fade during cycling in Li-ion batteries that prohibit their commercialization. Treatment of the materials with NH3(g) at high temperatures produces improved electrodes with higher stability of capacity and average voltage. The present study follows the changes occurring in the materials upon treatment with ammonia gas, through 6Li and 7Li solid-state NMR investigations of the untreated and ammonia treated 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 as well as its constituent phases, Li2MnO3 and LiNi0.4Co0.2Mn0.4O2. The NMR analysis demonstrates the biphasic nature of these materials. Furthermore, it shows that the Li2MnO3 component phase in the integrated material is the phase mostly being affected by the gas treatment. A thickening of a protective surface film in the integrated material, with the right exposure tim...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.