Abstract
The development of an effective molecular catalyst to reduce hydrazine efficiently to ammonia using a suitable reductant and proton source is demanding. Herein, an unprecedented air-stable, phosphine-free ruthenium complex is used as a potent catalyst for hydrazine hydrate reduction to generate ammonia using SmI2 and water under ambient reaction conditions. Maximizing the flow of electrons from the reductant to the hydrazine hydrate via the metal centre results in a greater yield of ammonia while minimizing the evolution of H2 gas as a competing product.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have