Abstract

An ammonia gas (NH3) generator was developed to maintain a set concentration of ammonia gas in a controlled environment chamber to study poultry physiological responses to sustained elevated levels of ammonia gas. The goal was to maintain 50 parts per million (ppm) of ammonia gas in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3000 cfm) recirculation system that regulated indoor temperature and humidity levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. The ammonia generator was fabricated by coupling ultrasonic humidifiers with an Arduino-based microcontroller and a metallic oxide MQ-137 ammonia gas sensor. Preliminary evaluation under steady conditions showed the average MQ-137 gas sensor accuracy was within 1.4% of the 65.4 ppm concentration measured using a highly accurate infrared gas analyzer. Further evaluation was performed for a setpoint concentration of 50 ppm where ammonia generator reservoirs were filled with 2% or 10% ammonia liquid. For the system tested, it was found that two generators operating at the same time filled with 3.8 L (1.0 gallon) of 2% ammonia cleaning liquid each (7.6 L or 2.0 gallons total) could maintain a gas level of 49.45 ± 0.79 ppm in the chamber air for a duration of 30 h before refilling was required. One generator filled with 3.8 L of 10% ammonia cleaning liquid could maintain 51.24 ± 1.53 ppm for 195 h. Two ammonia generators were deployed for a six-week animal health experiment in two separate controlled environment chambers. The two ammonia generators maintained an average ammonia concentration of 46.42 ± 3.81 ppm and 45.63 ± 4.95 ppm for the duration of the experiment.

Highlights

  • Ammonia (NH3 ) is a natural component of the bacterial fermentation occurring in fecal matter and urine [1]

  • Ammonia is rated Immediately Dangerous to Life or Health (IDLH) for human workers at a concentration of 300 ppm, and has a permissible exposure limit (PEL) of 50 ppm as a time weighted average (TWA) by the Occupational Safety and Health Administration [6]

  • Preliminary tests [33] were performed in a controlled environment chamber to determine the maximum concentration of ammonia gas produced from 2% (v/v) liquid ammonia using one or two ammonia generators operating at full speed continuously

Read more

Summary

Introduction

Ammonia (NH3 ) is a natural component of the bacterial fermentation occurring in fecal matter and urine [1]. Ammonia is rated Immediately Dangerous to Life or Health (IDLH) for human workers at a concentration of 300 ppm, and has a permissible exposure limit (PEL) of 50 ppm as a time weighted average (TWA) by the Occupational Safety and Health Administration [6]. The National Institute for Occupational Safety and Health [7] has a recommended exposure limit (REL) of 25 ppm TWA and 35 ppm short-term exposure limit (STEL). Animal welfare guidelines for the indoor ammonia concentration of egg-laying flocks and broiler hens are typically below 10 ppm [8,9] at bird level, with recommended limits of 20 ppm [10,11] and short-term maximums not exceeding 25 ppm [8,9,12] during extreme weather events

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call