Abstract

Ammonia gas sensing behavior of graphene synthesized by CVD on copper substrate using a methane and hydrogen gas mixture was investigated. The Raman spectroscopy was used to monitor the quality of graphene films transferred onto SiO2/Si substrates. The sensitivity and the recovery time of the device were enhanced by the deposition of gold nanoparticles on the surface of graphene films. The dependence of the sensing response with the operating temperature was studied. The adsorption and desorption curves were analyzed using Langmuir kinetic theory and Freundlich isotherm for the adsorption of ammonia gas. The activation energy and the heat of adsorption were estimated to be around 38 and 41meV, respectively for NH3 gas concentration of 58ppm at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.