Abstract

The amino sugars (e.g., glucosamine, galactosamine, mannosamine, muramic acid) in soils are frequently employed as biomarkers of microbial residues. The analysis of amino sugars in environmental matrices, however, is expected to be more complicated than their determination in isolated microbial cells. In this study, we employed a widely used protocol for amino sugar analysis, and found that some aminoglycoside antibiotics interfere with amino sugar quantification in vitro. The method converts the aminoglycosides to compounds that coelute with the aldononitrile acetate derivatives of the amino sugars. Specifically, streptomycin significantly interferes with muramic acid analysis, and kanamycin, tobramycin and amikacin hamper glucosamine measurement. Mass spectrometry confirmed that the interfering compounds from aminoglycosides are not actually genuine microbial amino sugar monomers (bacterial muramic acid or fungal glucosamine), and are most likely to be N-methyl glucosamine or 3-amino-3-deoxy-glucopyranose. In contrast to their effects on muramic acid and glucosamine analyses, aminoglycosides do not interfere with galactosamine and mannosamine quantification. The few data that exist on the environmental occurrence of aminoglycoside antibiotics suggest they occur at only trace levels. Our findings may have implications for the qualitative and quantitative validity of results from amino sugar assays in some context. Application of the aldononitrile acetate derivatization method to samples (especially in selective microbial cultures using aminoglycosides as inhibitors) requires that potential interference be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call