Abstract

Soil microbial residues play an important role in the formation and stabilization of soil organic matter and can be quantitatively characterized by amino sugars. However, the response of soil microbial residues to agricultural cultivation in karst areas remains unclear. In this study, we collected soil samples from natural reserved land as well as five plantation forests dominated by Citrus trees cultivated for 0, 1, 5, 15, 30 years to examine the effects of agricultural cultivation on the content of microbial residues (amino sugar analysis). Results showed that: (1) Soil Amino Sugars (ASs) contents were significantly reduced after agricultural cultivation along with the sharp decrease in soil organic carbon (SOC). After 30 years of cultivation, the contents of total ASs, glucosamine (GluN), galactosamine (GalN), and muramic acid (MurA) in cultivated soils decreased by 58.22%, 55.30%, 27.11%, respectively, compared with 0 yr.; (2) Microbial residual carbon contribution to SOC increased from 34.11% to 81.33% after 30 years of cultivation, including fungal residual carbon (FRC) (25.79% to 48.6%) and bacterial residual carbon (BRC) (8.32% to 32.72%); (3) Soil GluN/MurA values tended to decrease with increasing cultivation years. The results highlight the significant effect of cultivation years on amino sugar accumulation. It indicates that the years of reclamation in karst areas have different impacts on the organic fractions derived from various microbial communities in the soil organic matter pool, and the microbial residues indicated by amino sugar are of great significance for the interception of soil organic matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call