Abstract

The multifunctional alkoxysilane precursor, 2,6-bis(propyl-trimethoxysilylurelene)pyridine (DPS) was designed and synthesized, envisaging a multiple hydrogen-bond interaction in the molecular imprinting of the drug aminoglutethimide (AGT). Imprinted xerogels were obtained in bulk and spherical formats. The spherical format was achieved by pore-filling onto spherical mesoporous silica, as a straightforward technique to generate the spherical format. The bulk gels presented better selectivity for the template against its glutarimide (GLU) analogue (selectivity factor: bulk 13.4; spherical 4.6), and good capacity (bulk 5521μmol/L; spherical 2679μmol/L) and imprinting factor parameters (bulk 11.3; spherical 1.4). On the other hand, the microspherical format exhibited better dynamic properties associated to chromatographic efficiency (theoretical plates: bulk 6.8; spherical 75) and mass transfer, due mainly to the existence of a mesoporous network, lacking in the bulk material. The performance of the imprinted xerogels was not as remarkable as that of their acrylic counterparts, previously described. Overall it was demonstrated that the use of designed new “breeds” of organo-alkoxysilanes may be a strategy to achieve satisfactory imprints by the sol–gel processes. DPS may in principle be applied even more effectively to other templates bearing better-matching spatially compatible acceptor–donor–acceptor arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.