Abstract

The adsorbents with high adsorption capacity for simultaneously removing Cr(VI) and Hg(II) from aqueous solutions under broad working pH range are highly desirable but still extremely scarce. Here, a novel adsorbent with multidentate ligands was facilely fabricated by covalently bonding 4-amino-3-hydrazino-5-mercapto- 1,2,4-triazole on graphene oxide via the Schiff’s base reaction. The maximum adsorption capacities of Cr(VI) and Hg(II) on the current adsorbent were 734.2 and 1091.1 mg/g, which were 14.36 and 5.61 times higher than that of the pure graphene oxide, respectively, exceeding those of most adsorbents previously reported. More interestingly, Cr(VI) and Hg(II) concentrations were decreased from 2 mg/L to 0.0001 mg/L for Hg(II) and 0.004 mg/L for Cr(VI), far below the WHO recommended threshold for drinking water. Moreover, the adsorbent shows an excellent performance for simultaneous removal of Cr(VI) and Hg(II) with more than 99.9% and 98.6% removal efficiencies in aqueous solutions. Finally, the adsorbent was successfully applied in dealing with the real industrial effluent, implying huge potential in industrial application. This work offers a new possibility for the removal of the metallic contaminants by rational designing target groups and ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call