Abstract

It is highly desirable but remains extremely challenging to develop a facile strategy to prepare adsorbent for dealing with heavy metal pollution in water. Here, we report a facile approach for preparing sulfydryl-functionalized graphene oxide (S-GO) by cross-linking method with an unprecedented adsorption capacity and ultrahigh selectivity for efficient Hg(II) removal. The adsorbents exhibit a prominent performance in capturing Hg(II) from wastewater with a record-high adsorption capacity of 3490mg/g and rapid kinetics to reduce Hg(II) contaminants below the discharge standard of drinking water (2ppb) within 60min under a wide pH range even in the coexistent of other interfering metal ions. In addition, the adsorbents can be also easily recycled and reused multiple times with no apparent decline in removal efficiency. Considering the broad diversity, we developed also a magnetic Fe3O4/S-GO adsorbent by a simple chemical cross-linking reaction to achieve rapid separation of S-GO from their aqueous solution. In addition, the adsorbents were successfully applied in dealing with the practical industrial wastewater. The results indicate the potential of rationally designed sulfydryl-functionalized graphene oxide for high performance Hg(II) removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call