Abstract

The antihypertensive drug amiloride is being considered as a tactic to improve cancer therapy including that for chronic myelogenous leukemia. In this study, we show that amiloride modulates the alternative splicing of various cancer genes, including Bcl-x, HIPK3, and BCR/ABL, and that this effect is not mainly related to pH alteration, which is a known effect of the drug. Splice modulation involved various splicing factors, with the phosphorylation state of serine-arginine-rich (SR) proteins also altered during the splicing process. Pretreatment with okadaic acid to inhibit protein phosphatase PP1 reversed partially the phosphorylation levels of SR proteins and also the amiloride-modulated yields of Bcl-xs and HIPK3 U(-) isoforms. Genome-wide detection of alternative splicing further revealed that many other apoptotic genes were regulated by amiloride, including APAF-1, CRK, and SURVIVIN. Various proteins of the Bcl-2 family and MAPK kinases were found to be involved in amiloride-induced apoptosis. Moreover, the effect of amiloride on mRNA levels of Bcl-x was demonstrated to translate to the protein levels. Cotreatment of K562 and BaF3/Bcr-AblT315I cells with amiloride and imatinib induced more loss of cell viability than either agent alone. Our findings suggest that amiloride may offer a potential treatment option for chronic myelogenous leukemia either alone or in combination with imatinib.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.