Abstract
A wound dressing material should inhibit infections that may occur at the wound site, and at the same time, it should enhance the healing process. In this study, we developed an amikacin sulphate (AK) incorporated chitosan (Ch) and Diopside nanoparticles composite dressing (Ch-nDE-AK) for controlling wound infection and healing. The diopside nanoparticles (nDE) were prepared using sol-gel synthesis and characterized using XRD, FT-IR, and FESEM. nDE shows a size range of 142 ± 31 nm through FESEM analysis. Later, the developed composite dressing was characterized using SEM, EDS, and FT-IR analysis. Ch-nDE-AK dressing possesses a porous nature that will aid in easy cell infiltration and proliferation. The swelling studies indicated the expansion capability of the scaffold when applied to the injured site. Ch-nDE-AK scaffold showed a 69.6 ± 8.2 % amikacin sulphate release up to 7 days, which indicates the sustained release of the drug from Ch-nDE-AK scaffold. The drug release data was subjected to various kinetics models and was observed to follow the Higuchi model. The scaffold showed antibacterial activity against ATCC strains of S. aureus and E. coli for 7 days by in vitro. Ch-nDE-AK scaffold also showed antibacterial activity against S. aureus and E. coli clinical strains in vitro. The ex vivo antibacterial study confirmed the antibacterial ability of Ch-nDE-AK scaffold against S. aureus and E. coli. Ch-nDE-AK scaffold also exhibits anti-biofilm activity against S. aureus and E. coli. The Ch-nDE-AK scaffold showed cytocompatibility and cell attachment to fibroblast cells. Additionally, the scratch assay using fibroblast cells confirmed the role of the nDE in the scaffold, helping in cell migration. Thus, the developed Ch-nDE-AK dressing can potentially be used to treat infectious wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.