Abstract

The efficient removal of uranium (VI) (UO22+) is of great significance to the ecological environment. However, there is still a lack of efficient adsorption materials to remove UO22+ in wastewater economically. Because natural basswood has high porosity, natural hydrophilicity, and abundant surface functional groups, wood as a support material has a good application prospect in water treatment. In the present work, the amidoxime functional group (AO) is grafted to the hydroxyl group of the wood fiber (AO-wood). A carbon layer is formed on the surface of the basswood by heating, and some Ag nanoparticles with good optothermal effect are added to the wood tunnel (Ag-C-AO-wood). Ag-C-AO-wood is used for efficient wastewater treatment under light conditions. The adsorption kinetic of Ag-C-AO-wood is 4.6 h under one irradiation, which is 7 times faster than AO-wood. It has approached or even surpassed some traditional carbon materials with stirring. This method is expected to break the traditional stirring method. Ag-C-AO-wood can not only remove uranium up to 82% but also have a good removal efficiency (27%) on iodide ions. More importantly, due to basswood characteristics, it is possible to large-scale preparation and explore its potential application value in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call