Abstract

Amide bond formation is one of the most fundamental reactions in organic chemistry, and amide bonds constitute the key functional groups in natural products, peptides, and pharmaceuticals. Here we demonstrate the chemoenzymatic syntheses of 4-coumaroyl- and hexanoyl-amino acids, using 4-coumarate: CoA ligase from the model plant Arabidopsis thaliana (At4CL2). At4CL2 accepts 4-coumaric acid and hexanoic acid as the carboxylate substrates to generate acyl adenylates, which are captured by the amino group of amino acids to afford a series of N-acyl amides. This study shows the potential of 4CL for application as a biocatalyst to generate a series of biologically active amide compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call