Abstract

Lead (Pb) is a ubiquitous toxic heavy metal that is known to induce damage to major macromolecules (lipids, proteins, and nucleic acids) by enhancing the level of reactive oxygen species (ROS). Naringenin, a predominant flavonoid primarily found in citrus fruits has attained increasing attentiondue to its various pharmacological properties. Thus, the present investigation aimed to explore the ameliorative role of naringenin against Pb-induced toxicity in human peripheral blood lymphocytes (PBLs) under in vitro conditions. For this purpose, PBLs were exposed to Pb (350 µg/ml) alone as well in combination with naringenin (10 and 30 µg/ml). Sister chromatid exchange (SCE) and alkaline comet assay were used as genotoxic indices to evaluate the genotoxic and antigenotoxic activity of Pb and naringenin, respectively. Lipid peroxidation (LPO), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) assays were used as oxidative damage markers. The results revealed that Pb induced a significant (p < 0.05) increase in genetic and oxidative damage as compared with the untreated sample whereas the treatment of cells along with naringenin (10 and 30 µg/ml) and Pb (350 µg/ml) caused a significant reduction in genetic damage and elevation in SOD, GPx, and CAT activities and GSH level, accompanied by a significant reduction in LPO level as compared with Pb alone treated sample. So, the present investigation revealed that naringenin might be used as a protective agent against Pb-induced toxicity due to its antigenotoxic and antioxidative properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call