Abstract

Arsenic (As) is a well-known human carcinogen and a potent hepatotoxin. Environmental exposure to arsenic imposes a serious health hazard to humans and other animals worldwide. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiological and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than the curcumin. It has been reported that THC has antioxidant efficacy attributable to the presence of identical β-diketone of 3rd and 5th substitution in heptane moiety. In the present study, rats were orally treated with arsenic alone (5mgkg-1bw/day) with THC (80mgkg-1bw/day) for 28days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances. And also elevated levels of serum cholesterol, triglycerides, free fatty acids and phospholipids were observed in arsenic intoxicated rats. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca2+ATPase and a decrease in mitochondrial calcium content. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase along with non-enzymatic antioxidant such as reduced glutathione. Administration of THC exhibited significant reversal of arsenic induced toxicity in hepatic tissue. All these changes were supported by the reduction of arsenic concentration and histopathological observations of the liver. These results suggest that THC has a protective effect over arsenic induced toxicity in rat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.