Abstract

PurposeThe use of Spirulina sp. in food is limited by its bitter flavour and low absorption in the gastrointestinal system. The purpose of this study is to develop encapsulated Spirulina-alginate beads and to determine the physicochemical properties, the release efficiency in the simulated gastrointestinal fluid and the sensory acceptance of the beads when added into a rose syrup beverage.Design/methodology/approachSpirulina-alginate beads were prepared based on 3 × 3 factorial experiments consisting of three concentrations (1%, 2% and 3%) of plain sodium alginate and three concentrations (1, 3 and 5%) (w/v) of Spirulina. Encapsulated Spirulina-alginate beads were evaluated for their encapsulation effectiveness, size, texture, morphology, colour, in vitro release rate and sensory properties.FindingsSample H (3% sodium alginate + 1% Spirulina) had higher encapsulation efficiency (82.3%) but less protein (38.2 ppm) than Sample J (3% sodium alginate + 5% Spirulina) which produced more protein (126.4 ppm) but had lower encapsulation efficiency (54.5%). Alginate was the primary factor affecting bead size, and the texture became harder at 3% sodium alginate but softer at 5% Spirulina. As the concentration of Spirulina increased, the intensity of the green colour diminished. The encapsulated samples released test was better than the control samples, and Sample B (1% sodium alginate + 1% Spirulina) was preferred by the panellists in the sensory study.Originality/valueThis newly developed encapsulated Spirulina will improve the beverage acceptability, minimize the bitterness and increase the release percentage of Spirulina in simulated gastrointestinal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.