Abstract

Aflatoxins (AFB1) are mycotoxins known to be associated with human and animal diseases. The lung is a at risk from AFB1exposure either via inhalation or circulation. Green tea consumption is increasing over time due to widespread popularity as antioxidants, anti-inflammatory, and cytoprotective agents. Therefore, we attempted to study the lung toxicity caused by AFB1 and the possible ameliorating effect of green tea extract. Forty adult male albino rats were divided into five groups; Group I: Untreated control group, Group II (vehicle): Each rat received 1 ml of olive oil, Group III (GTE): Each rat received Camellia sinensis, green tea extract (30 mg/kg/day), Group IV(AFB1): Each rat received (50 μg/kg/day of AFB1). Group V (AFB1+ GTE): Each rat received the same previously mentioned doses of AFB1 in addition to GTE concomitantly. All treatments were orally gavaged for 8 weeks then rats were sacrificed. Serum levels of pro-inflammatory (IL-1β, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines were measured, lung tissues’ oxidative stress indices were also measured in addition to the histopathological study which was performed by using hematoxylin & eosin and Masson trichrome stains. Morphometric and statistical analyses were also performed. Oral gavage of AFB1 resulted in significant histopathological changes in the lung tissues, in the form of variable degrees of congestion, hemorrhage, interstitial inflammation with infiltration by chronic inflammatory cells, interstitial fibrosis, bronchitis, vasculitis and fibrous thickening of arterial walls. Inflammation was evident by elevated levels of pro-inflammatory cytokines and a declined level of anti-inflammatory cytokines. Also, oxidative stress was evident by increased levels of Malondialdehyde (MDA), Myeloperoxidase (MPO), and decreased levels of total glutathione (tGSH) and Catalase (CAT). The histopathological changes, inflammatory cytokines, and oxidative stress markers were significantly decreased during concomitant administration of green tea extract in (AFB1+ GTE) group. Aflatoxin B1 has deleterious effects on the lung tissue that could be minimized by concomitant administration of Green tea extract owing to its anti-inflammatory, antioxidant, and protective properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call