Abstract

BackgroundAcute liver injury occur after intraperitoneal administration of lipopolysaccharide (LPS). Oxidative stress and release of pro-inflammatory cytokines are both implicated in the pathogenesis of LPS-induced acute liver injury. This study investigated the ameliorative effect of fermented rooibos (Aspalathus linearis) extract on LPS-induced acute liver injury.MethodMajor phenolic compounds in the fermented rooibos extract by HPLC-DAD, as well as the in vitro antioxidant capacity were quantified before the start of the experiment. Male Wistar rats were randomized into 4 groups (n = 10 per group) and given either water or fermented rooibos extract for 4 weeks before LPS injection. Hepatic function markers, including aminotransferases and lactate dehydrogenase, lipid peroxidation markers, antioxidant enzymes, glutathione redox status, as well as cytokine levels were monitored in the rats.ResultsInjection of LPS significantly increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH). Oxidative stress, evidenced by increased thiobarbituric acid reactive substances (TBARS) measured as malondialdehyde (MDA) in plasma and liver, and decreased glutathione redox status (GSH: GSSG ratio) in whole blood and liver was induced in LPS-challenged rats. Furthermore, hepatic levels of pro-inflammatory response markers TNF-α, IL-1β and IL-6 were increased significantly. Pre-feeding the fermented rooibos extract for 4 weeks decreased LPS-induced elevated levels of serum AST and LDH (significantly, p < 0.05) as well as ALT marginally. Consuming rooibos caused an attenuation of the observed increase in plasma and hepatic MDA, decrease in whole blood and liver GSH:GSSG ratio, as well as the changes noted in various antioxidant enzymes. The elevation in TNF-α and IL-6 was significantly suppressed, indicating an inhibition of the induced inflammatory response by rooibos.ConclusionOverall, our data showed that aqueous rooibos extract attenuated LPS-induced liver injury possibly by modulating oxidative stress and suppressing pro-inflammatory cytokines formation.

Highlights

  • Acute liver injury occur after intraperitoneal administration of lipopolysaccharide (LPS)

  • Oxidative stress, evidenced by increased thiobarbituric acid reactive substances (TBARS) measured as malondialdehyde (MDA) in plasma and liver, and decreased glutathione redox status (GSH: GSSG ratio) in whole blood and liver was induced in LPS-challenged rats

  • Consuming rooibos caused an attenuation of the observed increase in plasma and hepatic MDA, decrease in whole blood and liver GSH:GSSG ratio, as well as the changes noted in various antioxidant enzymes

Read more

Summary

Introduction

Acute liver injury occur after intraperitoneal administration of lipopolysaccharide (LPS). Oxidative stress and release of pro-inflammatory cytokines are both implicated in the pathogenesis of LPS-induced acute liver injury. Endotoxemia-induced toxicity is characterized by injury to various organs, including liver, kidney and the brain, and it has been implicated as a contributing factor to bacterial infection resulting in sepsis, which is one of the major causes of morbidity and mortality in intensive care units [2]. Most of the toxicities observed in LPS-induced injury in the liver and systemic circulation has been attributed to toxic mediators produced by activated macrophages, including cytokines, such as tumor necrosis factor-α (TNF-α), interleukins (IL-1, IL-6, IL-8, and IL-12), other proinflammatory molecules, including platelet-activating factor, prostaglandins, as well as reactive oxygen and nitrogen species (RONS), such as nitric oxide (NO) and superoxide radical [3]. Fruits, vegetables, spices and teas are drawing a lot of attention because of their demonstrated health benefits, with scientific evidence demonstrating that phytochemicals in fruits, vegetables, spices and teas possess a high number of protective biological properties, including antioxidant, anti-inflammatory and other beneficial effects [5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.