Abstract

An effort has been undertaken for valorization of surplus biomass to synthesize sustainable and commercially competitive nanoadsorbents utilizing green synthetic strategies. This study encompasses a pioneering research on the comparative adsorption analysis of different modified forms of graphene oxide (GO) combined with functionalized cellulose nanofibers (CNF) derived from surplus biomass for elimination of noxious drug species from aqueous environment with a comprehensive study for evaluating the effect of loading percentage of functionalized GO. Characteristic assessments of the prepared nanocomposites were performed using FT-IR studies, powder XRD studies, FESEM analysis, EDS analysis and BET studies. The prepared nanohybrids were evaluated for their adsorptive performance for elimination of ciprofloxacin and ofloxacin and their performance was optimized in terms of adsorbent loading, pH and initial drug concentration. Further, investigation of adsorbent properties and the adsorption process was undertaken by studying different kinetic and isotherm models of adsorption. The adsorption potential of functionalized CNF was substantially ameliorated through its facile assemblage with functionalized GO. The experimental outcomes revealed that 20 wt% loading of carboxylated graphene oxide within the perforated surface of esterified cellulose nanofibres exhibited best adsorption performance with maximum removal capacity of 45.04 mg g−1 and 85.30 mg g−1 for ciprofloxacin and ofloxacin, respectively. The outstanding regenerability and reusability of nanocomposites present tremendous potential for development of inexpensive and sustainable sorbent materials for managing pharmaceutical pollution. Literature presents scarce data and insufficient number of reports which thoroughly compares the role of differently functionalized GO to potentiate the adsorptive performance of biomass based nanocellulose and its broad application prospects in wastewater remediation. This marks the novelty of the present investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.