Abstract

Ambipolar organic thin film transistors were fabricated by using hexadecahydrogen copper phthalocyanine (CuPc) and hexadecafluoro copper phthalocyanine (F16CuPc) as p-and n-type semiconductors, respectively. Ambipolar transport was observed in thin films based on either heterojunction (CuPc/F16CuPc or F16CuPc/CuPc with CuPc and F16CuPc as first deposited layer, respectively) or blend (CuPc:F16CuPc) architectures. Structure and morphology of thin films have been studied by atomic force microscopy (AFM) and X-ray diffraction (XRD). A careful study of the fine microstructure formed at the interface between CuPc and F16CuPc highlights the presence of three intermediate phase layers ensuring a continuously grown between highly ordered CuPc and F16CuPc polycrystalline thin films. Due to a better distribution between the phases (CuPc, F16CuPc and the intermediate phase layers), CuPc/F16CuPc heterojunctions give rise to an optimized ambipolar transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.