Abstract
We report on ambipolar modulation doping of monolayer FeSe epitaxial films grown by molecular beam epitaxy and in situ spectroscopic measurements via a cryogenic scanning tunneling microscopy. It is found that hole doping kills superconductivity in monolayer FeSe films on metallic Ir(001) substrates, whereas electron doping from polycrystalline IrO2/SrTiO3 substrate enhances significantly the superconductivity with an energy gap of 10.3 meV. By exploring substrate-dependent superconductivity, we elucidate the essential impact of substrate work functions on the superconductivity of monolayer FeSe films. Our results therefore offer a valuable reference guide for further enhancement of the transition temperature T c in FeSe-based superconductors by interface engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.