Abstract

Experimental and theoretical methods were employed to investigate the ambient-pressure, metastable phase transition pathways for Mg2C, which was recovered after high-pressure synthesis. We demonstrate that at temperatures above 600 K isolated C(4-) anions within the Mg2C structure polymerize into longer-chain carbon polyanions, resulting in the formation of the α-Mg2C3 (Pnnm) structure, which is another local energy minimum for the carbon-magnesium system. Access to the thermodynamic ground state (decomposition into graphite) was achieved at temperatures above ∼1000 K. These results indicate that recoverable high-pressure materials can serve as useful high-energy precursors for ambient-pressure materials synthesis, and they show a novel mechanism for the formation of carbon chains from methanide structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.