Abstract
The reactor tank liner is one of the most crucial safety barriers in a research reactor as it retains the radioactive material released from the fuel during the accident condition. It also contains the primary coolant for fission heat removal. The integrity of the tank liner determines the service life of the research reactor. So far, the remaining life estimation of pressure vessels in nuclear power plants is more widely applied and established than that of the research reactor tank liner. Therefore, a study on the remaining life estimation method of the research reactor tank liner is needed to ensure the research reactor operation safety. This paper aims to preliminarily study several methods applied to estimate the remaining life of a research reactor tank liner. The preliminary study consists of a qualitative assessment and a quantitative assessment. The qualitative assessment aims to propose several techniques or methods applied in estimating the remaining life of the reactor tank liner. The quantitative assessment applies one of the remaining life estimation methods discussed in the previous assessment. Generally, the remaining life of the research reactor tank liner can be estimated using the theoretical method and the experimental method. The theoretical methods are applied by calculating the neutron fluence received by the tank liner or by analyzing the fracture mechanics using numerical modeling if the cracks or other defects exist. The calculation of atom displacement number (dpa), as a standard measure of the neutron-induced radiation damage of the materials, can support the neutron fluence calculation. The experimental method is conducted by measuring several parameters of the tank liner material, such as the corrosion rate or the mechanical properties. In the quantitative assessment, the remaining life estimation of the Kartini Reactor tank liner was performed by neutron fluence calculation method using MCNP6 computer code. The result shows that the maximum neutron fluence received by the tank wall is 2.950E+17 n/cm2 for 40 years operating period. By comparing the cumulative neutron fluence received for 40 years to the thermal neutron fluence limit value of 1.18E+23 n/cm2, the Kartini Reactor tank liner can still be used for the next 1.6E+07 operation years. The result of the quantitative assessment implicitly shows that the remaining life estimation of the tank liner needs to: 1) consider all defects experienced by the tank liner and all factors (e.g., thermal, radiation, chemical, cyclic loading) which affect the tank liner material condition, and 2) perform the combination of theoretical and experimental methods. For an open-pool type reactor, corrosion monitoring and corrosion rate measurement are essential to perform the remaining life assessment of the tank liner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.