Abstract
This study was designed to investigate whether the acoustical characteristics of the Korotkoff sounds (K-sounds) were altered during exercise and/or masked by the ambient noise. After signing informed consent, 11 subjects (8 females, 3 males; 27 +/- 2 yr; 166.2 +/- 3.2 cm; 62 +/- 5 kg; means +/- SD) underwent a cycle ergometer exercise test that increased in workload by 30 W every 3 min until volitional fatigue. Heart rate, auscultatory systolic (SBP) and diastolic blood pressure (DBP), and oxygen consumption were monitored 1 and 2 min into each work stage. The auscultatory K-sounds were recorded with a microphone mounted in a stethoscope tube for later frequency (Hz) and sound pressure level (dB SPL) analysis. Frequency and SPL of ambient noise (99 +/- 13 Hz and 64 +/- 1 db at maximum, respectively) increased during the exercise test to magnitudes similar to the SBP and DBP K-sounds (166 Hz, 66 db; and 128 Hz, 69 db, respectively). Additionally, the ambient noise was responsible for a significant damping of the frequency and SPL of the measured blood pressure K-sounds and a rise in the measured frequency of the SBP K-sounds. Furthermore, we observed "inaudible" K-sounds at lower frequencies than adjoining audible K-sounds (100 Hz vs 126 Hz), supporting the known underestimation of SBP by auscultation. The increase in ambient noise during exercise testing dampens and may mask the auscultatory K-sounds, thus making detection of the proper K-sounds during exercise difficult at best. Furthermore, the presence of inaudible K-sounds may further explain the published discrepancies between auscultatory and intraarterial blood pressure measurements during exercise.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have