Abstract
A gold nanoparticles/monolithic mesoporous silica assembly was synthesized by ultrasonic irradiation of monolithic porous silica presoaked with precursor solution. Subsequent exposure to ambient air (ageing) and then drying at 120°C induce a new optical absorption peak around 470 nm (falling into the range from 460 to 475 nm) which is stable at room temperature, in addition to the normal surface plasmon resonance (SPR) of Au nanoparticles. Further drying results in the decline and disappearance of this peak, accompanied by increase of the normal SPR. If the sample, in which the new peak has disappeared due to long drying at 120°C, is exposed to the ambience once more, this peak will appear again after subsequent drying at 120°C, showing reversibility. Further experiments indicate that ambient ageing for a certain time plays a crucial role in the appearance of the new peak after subsequent drying at 120°C. Increased ageing time increases this peak. In addition, the ambient relative humidity and temperature during exposure are also important to the appearance of this peak. This peak may be associated with Au clusters with a size less than 1.5 nm. Based on the porous structure of the assembly and hydrophilicity of its pore wall, a nanodroplet formation and evaporation model is presented which can well explain all evolution behaviours of this peak. The model predicts the existence of the peak at 470 nm in the Au/silica assembly prepared by methods other than ultrasonic irradiation, which has also been confirmed by further experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.