Abstract

Millimeter wave (mmWave) based sensing is a significant technique that enables innovative smart applications, e.g., voice recognition. The existing works in this area require direct sensing of the human's near-throat region and consequently have limited applicability in non-line-of-sight (NLoS) scenarios. This paper proposes AmbiEar, the first mmWave based voice recognition approach applicable in NLoS scenarios. AmbiEar is based on the insight that the human's voice causes correlated vibrations of the surrounding objects, regardless of the human's position and posture. Therefore, AmbiEar regards the surrounding objects as ears that can perceive sound and realizes indirect sensing of the human's voice by sensing the vibration of the surrounding objects. By incorporating the designs like common component extraction, signal superimposition, and encoder-decoder network, AmbiEar tackles the challenges induced by low-SNR and distorted signals. We implement AmbiEar on a commercial mmWave radar and evaluate its performance under different settings. The experimental results show that AmbiEar has a word recognition accuracy of 87.21% in NLoS scenarios and reduces the recognition error by 35.1%, compared to the direct sensing approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.