Abstract

A novel and expeditious approach for direct determination of phenols in water and waste waters based on solid-phase extraction coupled on-line to a flow injection analysis (FIA) manifold is described. The method employs on-line preconcentration of the phenols in an acidified sample (pH=2.0) onto a 3 cm×3 mm column packed with Amberlite XAD-4 resin. The phenols are subsequently eluted from the resin into a flowing system with an alkaline solution (pH=13) by actuating a switching valve; the eluted analytes were then quantified spectrophotometrically as the products of reaction with 4-aminoantipyrine (4-AAP) and potassium ferricyanide on passing through the flow-cell of a detector. The proposed method has a linear calibration range 0.01–1 μg ml−1 of phenol, with a detection limit of 0.004 μg ml−1 (S/N=3) and a sample throughput of 12 h−1, investigated with a 4.4 ml sample volume. The relative standard deviation is 2.4% for 0.2 μg ml−1 of the analyte. The sensitivity offered by the procedure was higher by a factor of 13 than that provided by a conventional flow injection analysis method. The analytical scheme of the proposed system is much simpler than its conventional manual counterpart due to the fact that it combines trace enrichment, sample clean-up, derivation and detection in one analytical set-up. The high speed, ease of use and automation, selectivity, and relative freedom from random contamination by sample handling make this method ideal for the phenols monitoring in water and waste waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.