Abstract
Bacuri (Platonia insignis Mart) is a species from the Clusiaceae genus. Its fruit pulp is commonly used in South America in several food products, such as beverages, ice cream and candies. Only the pulp of the fruit is used, and the peels and seeds are considered waste from these industries. As a trioxygenated xanthone source, this species is of high interest for bioproduct development. This work evaluated the mesocarp and epicarp of bacuri fruits through different extraction methods and experimental conditions (pH, temperature and solvent) in order to determine the most effective method for converting this agro-industrial waste in a value-added bioproduct. Open-column procedures and HPLC and NMR experiments were performed to evaluate the chemical composition of the extracts, along with total phenols, total flavonoids and antioxidant activities (sequestration of the DPPH and ABTS radicals). A factorial design and response surface methodology were used. The best extraction conditions of substances with antioxidant properties were maceration at 50 °C with 100% ethanol as solvent for mesocarp extracts, and acidic sonication in 100% ethanol for epicarp extracts, with an excellent phenolic profile and antioxidant capacities. The main compounds isolated were the prenylated benzophenones garcinielliptone FC (epicarp) and 30-epi-cambogin (mesocarp). This is the first study analysing the performance of extraction methods within bacuri agro-industrial waste. Results demonstrated that shells and seeds of bacuri can be used as phenolic-rich bioproducts obtained by a simple extraction method, increasing the value chain of this fruit.
Highlights
Bacuri is a South American species of Clusiaceae named Platonia insignis Mart
The solvents most used in the extraction of bioactive compounds are methanol, ethanol, acetone, ethyl acetate and water [23,31]
In order to comply with the green chemistry postulates, ethanol/water mixtures were selected as solvents in this study
Summary
Bacuri is a South American species of Clusiaceae named Platonia insignis Mart. It is found from Paraguay to Suriname and is widely distributed in the Amazon and Cerrado biomes [1]. The fruit is famous for its pleasant and bittersweet taste, being largely consumed in food products such as beverages, ice cream and candies, for its sensorial attributes and for Biomolecules 2021, 11, 1767. The pulp used in the production of food comprises only 26% of the fresh fruit’s weight, with the other 58% of the weight considered waste [5–7]. This significant waste of biomass could be used to improve the local bioeconomy and develop new bioproducts, as several studies reported that P. insignis’s volatile fractions and the polar extracts of its seeds are rich in antioxidant, anti-inflammatory, anticonvulsant, antiparasitic, hypotensive and immunoregulatory compounds [1–3,8]. The chemical profile of the bioproduct highlights terpenes and phenolic compounds as its main bioactive compounds [9,10]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have