Abstract

Temperature field calculation is an important step in infrared image simulation. However, the existing solutions, such as heat conduction modelling and pre-generated lookup tables based on temperature calculation tools, are difficult to meet the requirements of high-performance simulation of infrared images based on three-dimensional scenes under multi-environmental conditions in terms of accuracy, timeliness, and flexibility. In recent years, machine learning-based temperature field prediction methods have been proposed, but these methods only consider the influence of meteorological parameters on the temperature value, while not considering the geometric structure and the thermophysical parameters of the object, which results in the low accuracy. In this paper, a multivariate temperature field prediction network based on heterogeneous data (MTPHNet) is proposed. The network fuses geometry structure, meteorological, and thermophysical parameters to predict temperature. First, a Point Cloud Feature Extraction Module and Environmental Data Mapping Module are used to extract geometric information, thermophysical, and meteorological features. The extracted features are fused by the Data Fusion Module for temperature field prediction. Experiment results show that MTPHNet significantly improves the prediction accuracy of the temperature field. Compared with the v-Support Vector Regression and the combined back-propagation neural network, the mean absolute error and root mean square error of MTPHNet are reduced by at least 23.4% and 27.7%, respectively, while the R-square is increased by at least 5.85%. MTPHNet also achieves good results in multi-target and complex target temperature field prediction tasks. These results validate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.