Abstract

ABSTRACTThe Akchar Erg of the Sahara of western Mauritania shows a morphology and stratigraphy that can be recognized as the amalgamation of late Pleistocene and Holocene deposits that reflect eustatic and climatic events. Mapping, trenching, and dating by 14C methods and artefacts show that the prominent complex linear dunes (draas) of the Akchar Erg are actually composite features showing at least three constructional and two destructional phases. The constructional phases are represented by three convex‐up layers: (i) a modern veneer moulded into superimposed crescentic dunes, which partially mantle the larger linear bedforms; (ii) a middle, partly root‐turbated sand deposited sometime during the last 4000 years; and (iii) a core of linear dune sand formed during the last glacial period (13 000–20 000 yr BP), which today shows relict relief, intense root‐turbation, and pedogenesis. These constructional phases are separated by super bounding surfaces that coincide with erg destructional phases. Surface 2 bounds the middle aeolian sand, and is marked by a lag surface of small granules. Surface 1 is a very prominent surface with an abundance of Neolithic artefacts, and represents stabilization of the linear dunes during the humid, interglacial period (4000–11 000 yr BP). Interdraa deposits originated during the interglacial period, and consist of continental lacustrine limestones and sandstones, humic sands deposited in marshes, and sabkhas on the coast. The sabkhas originated during interglacial highstand of sea‐level when interdraa areas were marine embayments, and subsequently dried during regression. The draa and interdraa sequences, therefore, in spite of being adjacent facies, actually represent different events and were not formed simultaneously. The upwind sand‐sheet margin of the Akchar Erg shows exposures of the middle and core aeolian sands (which were previously protected from deflation by vegetation) being progressively cannibilized in the current phase of erg construction, and revealing a crystalline basement rock. In this proximal area, conditions are not favourable for the incorporation of these aeolian accumulations into the stratigraphic record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.