Abstract

In-memory computing seeks to minimize data movement and alleviate the memory wall by computing in-situ, in the same place that the data is located. One of the key emerging technologies that promises to enable such computing-in-memory is spin-transfer torque magnetic tunnel junction (STT-MTJ). This paper proposes AM4, a combined STT-MTJ-based Content Addressable Memory (CAM), Ternary CAM (TCAM), approximate matching (similarity search) CAM (ACAM), and in-memory Associative Processor (AP) design, inspired by the recently announced Samsung MRAM crossbar. We demonstrate and evaluate the performance and energy-efficiency of the AM4-based AP using a variety of data intensive workloads. We show that an AM4-based AP outperforms state-of-the-art solutions both in performance (with the average speedup of about 10 ×) and energy-efficiency (by about 60 × on average).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.