Abstract

<span>Content addressable memory (CAM) and ternary content addressable memory (TCAM) are specialized high-speed memories for data searching. CAM and TCAM have many applications in network routing, packet forwarding and Internet data centers. These types of memories have drawbacks on power dissipation and area. As field-programmable gate array (FPGA) is recently being used for network acceleration applications, the demand to integrate TCAM and CAM on FPGA is increasing. Because most FPGAs do not support native TCAM and CAM hardware, methods of implementing algorithmic TCAM using FPGA resources have been proposed through recent years. Algorithmic TCAM on FPGA have the advantages of FPGAs low power consumption and high intergration scalability. This paper proposes a scaleable algorithmic TCAM design on FPGA. The design uses memory blocks to negate power dissipation issue and data collision to save area. The paper also presents a design of a 256 x 104-bit algorithmic TCAM on Intel FPGA Cyclone V, evaluates the performance and application ability of the design on large scale and in future developments.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.