Abstract
BackgroundAlzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarker cutoffs from immunoassays with low interlaboratory variability in diverse ethnic groups are necessary for their use in clinics and clinical trials. With lack of cutoffs from fully automated immunoassay platforms in diverse races, the aim of this study is to evaluate the clinical utility of CSF AD biomarkers from the Lumipulse fully automated immunoassay based on β-amyloid (Aβ) positron emission tomography (PET) status comparing with these from two manual immunoassays, in Koreans.MethodsAmong 331 Korean participants enrolled from a prospective, 3-year longitudinal observational study of the validation cohort of Korean Brain Aging Study for the Early Diagnosis and Prediction of AD, 139 (29 CN, 58 SCD, 29 MCI, and 23 AD) provided CSF and 271 underwent baseline amyloid PET (n = 128 with overlapping CSF and Aβ-PET, and 143 without CSFs). Three annual cognitive and neuropsychiatric function tests were conducted. Aβ42, Aβ40, total-tau, and phosphorylated-tau181 were measured by Lumipulse fully automated immunoassay and two manual immunoassays (INNO-BIA AlzBio3, INNOTEST). Clinical utility of CSF biomarker cutoffs, based on 128 participants with Aβ-PET, was evaluated.ResultsCognitive and neuropsychological scores differed significantly among the groups, with descending performance among CN>SCD>MCI>AD. Biomarker levels among immunoassays were strongly intercorrelated. We determined the Aβ-PET status in a subgroup without CSF (n = 143), and then when we applied CSF biomarker cutoffs determined based on the Aβ-PET status, the CSF biomarkers (cutoffs of 642.1 pg/mL for Aβ42, 0.060 for Aβ42/Aβ40, 0.315 for t-tau/Aβ42, and 0.051 for p-tau/Aβ42, respectively) showed good agreement with Aβ-PET (overall AUC ranges of 0.840–0.898). Use of the Aβ-PET-based CSF cutoffs showed excellent diagnostic discrimination between AD and CN (Aβ42, Aβ42/Aβ40, t-tau/Aβ42, and p-tau/Aβ42) with overall AUC ranges of 0.876–0.952. During follow-up, participants with AD-like CSF signature determined by Aβ-PET-based cutoffs from Lumipulse showed rapid progression of cognitive decline in 139 subjects, after adjustment for potential confounders, compared with those with a normal CSF signature.ConclusionCSF AD biomarkers measured by different immunoassay platforms show strong intercorrelated agreement with Aβ-PET in Koreans. The Korean-specific Aβ-PET-based CSF biomarker cutoffs measured by the Lumipulse assay strongly predicts progression of cognitive decline. The clinical utility of CSF biomarkers from fully-automated immunoassay platforms should be evaluated in larger, more diverse cohorts.
Highlights
Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarker cutoffs from immunoassays with low interlaboratory variability in diverse ethnic groups are necessary for their use in clinics and clinical trials
CSF AD biomarkers measured by different immunoassay platforms show strong intercorrelated agreement with Aβ-positron emission tomography (PET) in Koreans
The Korean-specific Aβ-PET-based CSF biomarker cutoffs measured by the Lumipulse assay strongly predicts progression of cognitive decline
Summary
Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarker cutoffs from immunoassays with low interlaboratory variability in diverse ethnic groups are necessary for their use in clinics and clinical trials. Given the pathologic characterization of Alzheimer’s disease (AD) by amyloid-β (Aβ) plaques and neurofibrillary tangles, measurement of AD biomarkers amyloid beta (1–42 and 1–40) (Aβ42, Aβ40), total tau (t-tau), and phosphorylated tau at Thr181 (p-tau) in cerebrospinal fluid (CSF) is recommended for accurate AD diagnosis and research [1, 2]. These biomarkers have been widely appreciated that the ADlike feature of “core” CSF AD biomarkers characterized by a lower Aβ42 and higher t-tau or p-tau levels in the CSF of patients with AD, compared with that of healthy older adults, reflects the abnormal Aβ plaque burden and tau pathology. Fully automated immunoassay systems have been developed [13], including the Elecsys developed by Roche Diagnostics (Rotkreuz, Switzerland) and the Lumipulse developed by Fujirebio (Fujirebio Europe, Gent, Belgium), which show high concordance with amyloid positron emission tomography (PET) classification [14,15,16]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have