Abstract
With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates. To address these issues, this study proposes a deep learning model to detect Alzheimer's disease; it is called Enhanced Residual Attention Network (ERAN) that can classify medical images. By combining residual learning, attention mechanism, and soft thresholding, the feature representation ability and classification accuracy of the model have been improved. The accuracy of the model in detecting Alzheimer's disease has reached 99.36%, with a loss rate of only 0.0264. The experimental results indicate that the Enhanced Residual Attention Network has achieved excellent performance on the Alzheimer's disease test dataset, providing strong support for the early diagnosis and treatment of Alzheimer's disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have