Abstract

The general toxicity of fine particulate matter (PM2.5) has been intensively studied, but its pulmonary toxicities are still not fully understood. To investigate the changes of lung tissue after PM2.5 exposure and identify the potential mechanisms of pulmonary toxicity, PM2.5 samples were firstly collected and analyzed. Next, different doses of PM2.5 samples (5 mg/kg, 10 mg/kg, 20 mg/kg) were intratracheally instilled into rats to simulate lung inhalation of polluted air. After instillation for eight weeks, morphological alterations of the lung were examined, and the levels of oxidative stress were detected. The data indicated that the major contributors to PM2.5 mass were organic carbon, elemental carbon, sulfate, nitrate, and ammonium. Different concentrations of PM2.5 could trigger oxidative stress through increasing reactive oxygen species (ROS) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, and decreasing expression of antioxidant-related proteins (nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1) and catalase). Histochemical staining and transmission electron microscopy displayed pulmonary inflammation, collagen deposition, mitochondrial swelling, and a decreasing number of multilamellar bodies in alveolar type II cells after PM2.5 exposure, which was related to PM2.5-induced oxidative stress. These results provide a basis for a better understanding of pulmonary impairment in response to PM2.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call