Abstract
AbstractFructose is a versatile precursor for food and chemicals. Currently, catalytic production of fructose is achieved by enzymatic isomerization of glucose from renewable lignocellulose. Although the catalyst, glucose isomerase, is selective, it is not stable. Here, aluminum‐containing metal‐organic frameworks (Al‐MOFs) are shown to be active, selective, stable, and reusable for glucose isomerization in ethanol. Al‐MOFs achieved 64% fructose selectivity with 82% glucose conversion at 120 °C, superior performance compared with most other solid catalysts. The amino groups in Al‐MOFs enhance Lewis acid strength, which is responsible for the high fructose selectivity at high glucose conversion. Moreover, the Al‐MOF catalyst is stable and reusable at least four times without losing either activity or fructose selectivity. These findings illustrate compelling opportunities for Al‐MOFs in fructose production and other organic reactions, such as fructose conversion to 5‐hydroxymethylfurfural and levulinic acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.