Abstract

Aluminum cladding oxidation of research-reactor fuel elements at high power conditions has a disadvantageous effect on fuel performance due to the lower thermal conductivity of the oxide. The oxide growth prediction models available in the literature were mostly developed for low power conditions. To examine the applicability of the models to high power and high temperature test conditions, the models were studied by coupling with the most frequently employed heat transfer coefficient (HTC) correlations including the Dittus-Boelter correlation, the Colburn correlation, the Sieder-Tate correlation, and KAERI-developed correlation. The Griess model over-predicted the oxide growth while the KAERI-Griess model under-predicted the oxide growth for high power tests. The Kim model, coupled with the Colburn correlation, gave most consistent results with the measured data from two BR2 experiments. However, the Kim model was found to be inapplicable to the EUHFRR conditions at the peak power locations if it was coupled with the Dittus-Boelter correlation. A revision of the prediction models to more closely agree with the measured data was recommended. AG3NE and AlFeNi cladding types were tested in the E-FUTURE experiment, and a noticeable (although small) reduction in oxide thickness on the AlFeNi cladding was observed. However, this difference was believed to be only a secondary effect considering other uncertainties in model predictions, so no attempt was made to model the alloying effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.