Abstract

Lead halide perovskite nanocrystals (PNCs) have demonstrated great potential in emerging display technologies. However, the practical application of PNCs is hindered by the inherent instability of their ionic surface. Here, we proposed a surface modification approach to enhance the stability of CsPbBr3 PNCs by postsynthetic treatment with aluminum phenylbutyrate (Al(PA)3). Our study reveals that Al(PA)3 displaces ammonium ligands and binds tightly on surface halide, providing excellent air and moisture resistance while preserving a high quantum efficiency of 81.6%. The modified PNCs maintain a constant photoluminescence intensity under continuous UV light illumination for 500 h. Additionally, the Al(PA)3 ligand is compatible with styrene, enabling homogeneous dispersion of PNCs in polystyrene matrices to form bright and uniform PNC-PS thin films. We demonstrated the application of the composite films for display backlighting, which exhibits a wide color gamut of 125% NTSC. The result highlights the potential of AlPA-modified PNCs in light-emitting and other optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.