Abstract
Bottom ash residues from three incinerators (K, N, and R) in Japan were used to characterize the metal aluminum and aluminum alloys and their potential for hydrogen gas generation. The samples were sieved into four fractions: (1) d ≤ 0.6 mm, (2) 0.6 ≤ d ≤ 1.0 mm, (3) 1.0 ≤ d ≤ 2.0 mm, and (4) 2.0 ≤ d ≤ 4.75 mm for characterization and hydrogen gas evolution experiments. Based on microscopic and microanalytical (SEM-EDX) examinations, the metal aluminum alloys with high purity (>90 wt% Al in most occurrences) and various sizes were randomly distributed in the ash particles. X-ray diffraction (XRD) analysis was carried out to identify the primary and secondary mineral phases in the ash residues before and after the hydrogen gas generation experiments. Batch experiments were performed to evaluate the hydrogen generation potential in each bottom ash fraction under agitated (200 rpm) and non-agitated conditions at 40 °C for 20 days. The highest amount of hydrogen gas (cumulative) under agitation was 39.4, 10.0, and 8.4 l/kg of dry ash for N2, R2, and K2, respectively. Under non-agitated condition, N2, R2, and K2 also yielded the highest amount of hydrogen, which was 38.3, 6.5, and 6.8 l/kg of dry ash, respectively. As a result of these experiments, the metal aluminum aggregates considerably converted to gel-like and crystalline Al-rich hydrate phases. The inherent alkalinity of the ash environment (pH ≥ 12) and the existence of metal aluminum were considered the key parameters to trigger and maintain the hydrogen generation reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.