Abstract

The excellent material properties of the wide band gap semiconductor SiC are accompanied by challenges in device processing. Of particular importance is the incomplete activation of implanted Al acceptors after high-temperature annealing. In this work, we present a novel approach in applying the differential-capacitance method to lateral MOS capacitors, where systematic errors in its characterization are reduced by introducing a buried current-spreading layer. We find that the implantation of an additional current-spreading layer significantly reduces series resistance effects and enables a reliable capacitance-voltage measurement of low dopant concentrations of p-type wells in n-type epitaxial layers. The measurement of an Al box-like profile implanted at 500 °C and resulting in a doping concentration of 3·1017 cm-3 shows full activation after annealing at 1800 °C for 30 minutes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call