Abstract

Aluminosilicate and ZSM-5 catalyst were synthesized from local materials, low-grade Indonesian kaolin. High quartz impurities content in the low-grade kaolin was successfully reduced by the consecutive treatment process including washing, centrifugation, and Fe3+ treatment. All the synthesized catalyst showed mesoporous structure with pore diameter around 3.5 nm. The catalytic activity was investigated in the acetalization of 3,4-dimethoxybenzaldehyde and propylene glycol, then the effect of a different base (TPAOH and NaOH) and Fe3+ addition in the treatment process to the catalytic activity was discussed. The catalytic activity of the aluminosilicate catalyst outperforms the ZSM-5. Interestingly, it is found that the catalytic activity of the catalyst can be enhanced by addition of Fe3+ in the aluminosilicate, with enhanced the conversion from 32.2% to 81.6%, whereas Fe3+ addition to ZSM-5 showed slightly increased conversion value from 0% to 3.65%. All catalysts showed high selectivity of 100% of the reaction product 2-(3,4-dimethoxy-phenyl)-4-methyl-1,3-dioxolane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call