Abstract

Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H+ and K+ fluxes, rhizosphere pH, and plasma membrane potential, Em). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H+ influx at the distal elongation zone (DEZ) and Al-induced H+ efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around –60 mV became hyperpolarization at –110 mV after 20 min. At the DEZ, the Em changes corresponded to the changes in K+ flux: K+ efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with Em depolarization, higher K+ efflux, and higher H+ influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H+ uptake under low-pH stress, which was abolished by Al exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call