Abstract

Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC) using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

Highlights

  • The need of decreasing the weight of the components in the transport industry [1] by the substitution of steel and iron casting components by plastics, carbon fiber, or aluminium and magnesium alloys has become one of the major boosters for transport industries

  • Different experiments have been developed in order to determine the accuracy of different types of aluminium foams and casting parameters

  • The first casting trials were made by casting the AM60B alloy at 680 °C and 720 °C over an aluminium foam core

Read more

Summary

Introduction

The need of decreasing the weight of the components in the transport industry [1] by the substitution of steel and iron casting components by plastics, carbon fiber, or aluminium and magnesium alloys has become one of the major boosters for transport industries. In the case of the bicycle industry, the substitution of materials such as steel, aluminium, and titanium by carbon fiber for high performance bicycles is a clear tendency. During solidification the metal contracts and can produce shrinkage porosity in the casting. To solve this physical phenomenon, metal is pressed in the liquid or semi-solid state using high pressures into the die cavity (specific pressures over the injected part of about 60 to 100 MPa). Steel dies can be designed to obtain very complex geometries and the total cycle time of the process is usually lower than 60 s

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.