Abstract

A laser cladding and friction stir processing hybrid method was employed to produce an Al matrix composite layer. The microstructure, phase composition, microhardness and conductivity of the composites were investigated. A laser cladding layer with a thickness of approximately 200 μm was prepared on a 1060 aluminium plate and it was broken up and distributed on the Al matrix after friction stir processing. The particle/Al interfaces exhibited extremely good interfacial integrity. Microstructural observations revealed that an obvious in situ reaction occurred at the particle/Al interfaces, which effectively improved the bonding between the reinforcement phase and the matrix. TEM analysis and selected area diffraction enabled the identification of the intermetallic compounds and confirmed them to be Al5Fe2 and Al3Fe. The average microhardness values of the friction stir processed composites reached approximately 85 HV. The electrical resistivity of the friction stir processed composites is slightly higher than that of the aluminium matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.