Abstract

Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear modes like cavitation erosion, erosion abrasion, sliding abrasion, and the results obtained compared with the base alloy. It is found that there are a number of contributing factors for the resulting wear and all are not necessarily derogatory in nature. The limits within which the AMMCs can exhibit superior performance over the base alloy have been discussed. Worn surface and subsurface studies have been carried out to understand the mechanism of material removal and the role of the different contributing factors to material removal. Wear mechanisms that have been prevalent have been suggested and the possibility of making wear resistant components from the MMCs is discussed based on the experimental results obtained.

Highlights

  • Material scientists and researchers in this area have been fulfilling the demand of the engineering sector since decades in synthesizing materials to attain the demanded properties to enhance efficiency and cost savings in the manufacturing sector

  • The demands moved ahead and engineering components were demanded from Albased metal matrix composites (AMMCs)

  • The other routes were more efficient regarding property attainment and microstructural features, still the ease of fabrication added to the cost economics made the liquid metallurgy route a competitive and viable method

Read more

Summary

Introduction

Material scientists and researchers in this area have been fulfilling the demand of the engineering sector since decades in synthesizing materials to attain the demanded properties to enhance efficiency and cost savings in the manufacturing sector. In fulfilling this demand, a certain trend has been followed, the materials presently been used is tried for improvement through known methods of alloy additions, heat treatment, grain modification, and the like. Once the limit is reached through these methods, either due to economic constraint, difficulty in mass production, or further improvement is ruled out, a different line of thought emerges in further improving the properties or decreasing cost and increasing efficiency. The other methods changed track and chose for themselves different areas of application and Albased metal matrix composites (AMMCs) remained as the most potential candidate to be researched on for making engineering components viable [1,2,3,4,5]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call