Abstract
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Highlights
Fine-scale spatial genetic structure (FSGS), the non-random spatial distribution of genotypes within populations, is shaped by microevolutionary processes such as dispersal, local genetic drift and selection [1]
We addressed the following specific questions: (i) Is within-population FSGS in S. globulifera in agreement with expectations based on the species’ life history traits, and to what extent does its strength vary among populations? (ii) Is FSGS in agreement with drift-dispersal equilibrium as predicted by isolation by distance (IBD) theory or are there within-population discontinuities in allele frequencies (SGH)? (iii) Are there any similarities in the strength and patterns of FSGS in groups of populations, and do they concur with, e.g. similar disperser communities, habitat features or biogeographic history?
Six out of seven Symphonia globulifera populations from Africa and America displayed finescale spatial genetic structure based on Sp, and all seven had a significant FSGS based on spatial principal component analysis (sPCA)
Summary
Fine-scale spatial genetic structure (FSGS), the non-random spatial distribution of genotypes within populations, is shaped by microevolutionary processes such as dispersal, local genetic drift and selection [1]. FSGS studies can inform on mechanisms underlying demographic processes and spatial genetic heterogeneity in populations, providing guidance for sustainable forest management and conservation practises The IBD model predicts that, at drift-dispersal equilibrium, genetic differentiation among individuals is an increasing function of geographic distance due to spatially limited isotropic gene dispersal and local genetic drift [1,3,5,6]. As pollen and seed dispersal are usually spatially restricted, the strength of FSGS under IBD assumptions can provide information on the historical gene dispersal distance in the population [1,6]. While useful as the basic expected pattern (null model), the IBD model does not consider other features or processes that can constrain gene flow or generate spatial heterogeneity or discontinuities in allele frequencies
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have