Abstract

Abstract. Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCN), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties (scattering and absorption coefficients) were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the Indian summer monsoon (ISM) of 2016. The experiment was conducted under the aegis of the combined South-West Asian Aerosol–Monsoon Interactions and Regional Aerosol Warming Experiment (SWAAMI–RAWEX) campaign. The measurements covered coastal, urban and arid environments. In general, the CCN concentration was highest in the central IGP, decreasing spatially from east to west above the planetary boundary layer (PBL), which is ∼1.5 km for the IGP during pre-monsoon period. Despite this, the CCN activation efficiency at 0.4 % supersaturation was, interestingly, the highest over the eastern IGP (∼72 %), followed by that in the west (∼61 %), and it was the least over the central IGP (∼24 %) within the PBL. In general, higher activation efficiency is noticed above the PBL than below it. The central IGP showed remarkably low CCN activation efficiency at all altitudes, which appears to be associated with high black carbon (BC) mass concentration there, indicating the role of anthropogenic sources in suppressing the CCN efficiency. These first-ever CCN measurements over the western IGP, encompassing “the Great Indian Desert” also known as “the Thar Desert”, showed high CCN efficiency, ∼61 % at 0.4 % supersaturation, indicating the hygroscopic nature of the dust. The vertical structure of CCN properties is found to be air mass dependent, with higher activation efficiency even over the central IGP during the prevalence of marine air mass. Wet scavenging associated with precipitation episodes seems to have reduced the CCN activation efficiency below cloud level. An empirical relation has emerged between the CCN concentration and the scattering aerosol index (AI), which would facilitate the prediction of CCN from aerosol optical properties.

Highlights

  • The cloud-nucleating ability of aerosols is fundamental in understanding aerosol–cloud interactions (ACIs) and associated feedback processes, which are complex in nature and pose a major challenge in quantifying the indirect climate forcing of aerosols (Boucher et al, 2013; IPCC, 2013)

  • The present study shows that about 66 % of the total aerosols in the planetary boundary layer (PBL) of the western Indo-Gangetic Plain (IGP) (JDR) were activated as cloud condensation nuclei (CCN) at 1 % supersaturation

  • The decrease in CCN concentration over BBR after the rainfall and the high CCN efficiency seen in the present study indicate the highly soluble nature of the aerosol system prevailing over the region

Read more

Summary

Introduction

The cloud-nucleating ability of aerosols is fundamental in understanding aerosol–cloud interactions (ACIs) and associated feedback processes, which are complex in nature and pose a major challenge in quantifying the indirect climate forcing of aerosols (Boucher et al, 2013; IPCC, 2013). Due to the region-specific and heterogeneous nature of the composition of aerosols, their chemical interactions, vertical mixing, and advection to long distances, significant uncertainties still persist in characterising the CCN activation efficiency, especially its region-specific nature and altitude variation in the real atmosphere (Zhang et al, 2017). The characterisation of the vertical structure and the spatial variability of CCN characteristics across the IGP remains quite limited, except for some recent efforts using instrumented aircraft during the summer monsoon season under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) (Prabha et al, 2012; Konwar et al, 2014; Padma Kumari et al, 2017). The campaign details along with the measurement protocols are given below, followed by the results and discussions

Campaign
Measurements
Vertical distribution of CN and CCN
Altitudinal dependence of CCN–CN association
CCN spectra and parameterisation for different altitudes
CCN activation efficiency: vertical structure and variation across the IGP
CCN and aerosol optical properties
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call