Abstract

Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

Highlights

  • Systemic neonicotinoid insecticides are used to protect a wide variety of crops

  • The large-scale, often prophylactic use (Goulson 2013) of neonicotinoid insecticides contrasts with the main principle of an integrated pest management (IPM) approach which includes an assessment of economically important pest populations in order to determine if an insecticide treatment is required

  • It is becoming increasingly clear that prophylactic insecticide treatments with neonicotinoids are often not needed and result in unnecessary contamination of the environment thereby increasing risks to non-target organisms and may increase the likelihood of developing resistance among insect pests (Szendrei et al 2012)

Read more

Summary

Introduction

Systemic neonicotinoid insecticides are used to protect a wide variety of crops. Based on their efficacy to control many insect pests and their systemic activity, they are used extensively in agriculture so that by 2008, neonicotinoids accounted for one quarter of the global insecticide market (Jeschke et al 2011), and this rate is increasing (Simon-Delso et al 2014). Foliage insecticide treatments (e.g. with pyrethroids and phosphorganics) against WCR beetles may sometimes (i) protect maize silks from beetle chewing if applied before flowering, but this is needed only with very high WCR populations (Furlan, unpublished data) that should not be the case when IPM strategies are implemented; and (ii) reduce WCR population levels and the subsequent oviposition by females.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call