Abstract
The article deals with the development of active vibration control of seismically-excited building structures. The control scheme is based on an alternative proportional-derived (PD) controller designed based only on the bandwidth of the system, which is an attractive technique for structural vibration suppression purposes and practical motion control solutions. The tuning method is analyzed employing Kharitonov’s theorem and Routh-Hurwitz criteria, which give necessary and sufficient conditions for choosing the two PD range of gains. Based on modal analysis, the system is transformed into a set of decoupled ordinary differential equations to simplify the PD design. An important advantage concerning a classical PD controller is the proposed PD design only uses the natural frequencies, which are relatively easy to estimates around an experimental test. Moreover, the proposed approach does not need frequently tune the gains parameters, so the design procedure is greatly simplified and, the proposed scheme does not need the system parameters, which generally are unknown. This method allows generalizing the controller design for multi-story buildings without modifying the controller structure, by choosing a scalar parameter. The effectiveness of the proposed PD schemes is demonstrated through simulation and experimental results of a reduced scale two-story building prototype.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have